Тихий геній, розгадка вікової математичної загадки

12

У листопаді 2002 року математик Григорій Перельман анонімно завантажив статтю на публічний сервер. Тоді світ ще не знав, що цей, здавалося б, буденний вчинок стане вирішальним кроком у розв’язанні однієї з найскладніших проблем математики – гіпотези Пуанкаре. Ця складна проблема мучила математиків протягом майже століття, і її вирішення похитнуло основи топології, розділу математики, який займається вивченням форм.

Отже, що це була за невловима гіпотеза? Уявіть будь-яке тривимірне тіло, наприклад кішку або Емпайр-Стейт-Білдінг, і намалюйте на його поверхні двовимірний контур. Якщо ви можете зменшити цей контур до такої міри, що він зникне в точці, не порушуючи ні контуру, ні об’єкта, то, згідно з гіпотезою Пуанкаре, цей тривимірний простір математично еквівалентний сфері. По суті, вона стверджувала про фундаментальний зв’язок між кривизною та здатністю стискати контури в тривимірному просторі.

Хоча математик Стівен Смолл успішно розв’язав пов’язану проблему в п’яти вимірах ще в 1961 році, що принесло йому престижну премію Філдса з математики, тривимірний випадок уперто опирався розв’язанню. Прорив стався у 1980-х роках завдяки Річарду Гамільтону, математику з Колумбійського університету, який запропонував використати техніку під назвою «потік Річчі» для вирішення цієї головоломки.

Подумайте про потік Річчі як про плавність зминання харчової плівки феном; він поступово усуває складки і викривлення, спрощуючи складні форми в більш фундаментальні. У цьому контексті потік Річчі теоретично може сплющити будь-яку тривимірну форму в стан, подібний до кулі. Але ось у чому заковика:

Процес часто призводив до «особливих точок» — точок нескінченної щільності, які загрожували скасувати весь підхід. Ці особливі точки діяли як уперті складки, які відмовлялися розгладжуватися. Математики могли спробувати видалити їх хірургічним шляхом, але завжди був страх, що неминуче виникнуть нові, що зробить рішення неповним.

Ідея Перельмана полягала в тому, щоб вирішити проблему особливих точок. Після десяти років наполегливої ​​роботи в Сполучених Штатах він вирішив повернутися до рідного Санкт-Петербурга в середині 1990-х і відійти від академічної діяльності.

Він став самітником, якого колеги описували як «невід цього світу» з довгим волоссям і нігтями, що нагадує історичну постать Распутіна. Його увага залишалася повністю зосередженою на роботі, часто зникав у своїй квартирі на кілька днів, де, за чутками, він гуляв довколишніми лісами або збирав гриби у вільний час. Здавалося, він абсолютно байдужий до слави і матеріального достатку.

І тоді, з цього несподіваного мовчання, з’явилися три новаторські статті, опубліковані між 2002 і 2003 роками. У них Перельман ретельно виклав своє рішення проблеми особливих точок, довівши, що ці проблемні точки неминуче спрощуються в керовані форми, такі як сфери або труби. Він продемонстрував, що якщо ви терпляче стежите за процесом Річчі до його логічного завершення, будь-яка складна тривимірна форма з часом перетвориться на кулю.

Гіпотеза Пуанкаре була остаточно розкрита.

Хоча математикам знадобилося кілька років, щоб повністю зрозуміти й перевірити заплутані деталі доказів Перельмана, його робота стала видатним досягненням у топології. У 2006 році колеги Джон Морган і Ган Тіан опублікували велику 473-сторінкову статтю, що підтверджує рішення Перельмана. Математичне співтовариство вітало його як провидця, і йому запропонували престижну медаль Філдса та престижну премію тисячоліття Клея (включає премію в 1 мільйон доларів) на знак визнання його новаторської роботи.

Він відмовився від обох нагород, нібито через обурення тим, як розподіляли заслуги у світі математики. Перельман пішов у відставку з посади в Інституті скла в 2005 році і повністю відійшов від громадського життя. Він залишається здебільшого самітником, тихо живучи у своїй квартирі в Санкт-Петербурзі, де сусіди кажуть, що він піклується про свою літню матір. Його спадщина є свідченням сили самотності генія та непомітності відкриття революційних математичних знань.

попередня статтяТиждень у науці: від канібальних сонячних бур до потенційно небажаної комети
наступна статтяКрихітні команди: як мурахи розгадали секрет успішної командної роботи